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Stabilized brane world models have been widely discussed in the last years. The most

consistent model with flat metric on the branes was proposed in paper [1], where exact

solutions to equations of motion for the background metric and the scalar field were found.

The size of the extra dimension is defined by the boundary conditions for the scalar field

on the branes.

Most brane world models assume the metric on the branes to be the flat Minkowski

metric. At the same time it is evident that more realistic models should account for

a cosmological evolution on the branes. This problem is widely discussed in scientific

literature, see, for example [1, 2], reviews [3, 4] and references therein. Quite an interesting

class of the brane world models is the one describing background solutions with dS4 metric

on the branes. Different models with the scalar field living in the bulk and dS4 metric on

the branes were discussed in [1, 5, 6].

In this paper we discuss a model which provides different exact solutions (with flat

Minkowski or dS4 background metric on the branes) for different values of the fine-tuned

brane tensions in both cases (the same problem was discussed in [5], where an exact solution

with zero Hubble parameter on the branes and an approximate solution with nonzero

constant Hubble parameter on the branes were obtained for the same bulk scalar field

potential). We also show that under an appropriate value of the parameter of the bulk

scalar field potential the equations of motion lead to these different exact solutions even

for the same values of the brane tensions in both cases.

To this end let us consider gravity in a five-dimensional space-time E = M4 × S1/Z2,

interacting with two branes and with the scalar field φ. Let us denote coordinates in E

by {xM} = {t, xi, y}, M = 0, 1, 2, 3, 4, where x0 ≡ t; {xi}, i = 1, 2, 3 are three-dimensional

spatial coordinates and the coordinate y ≡ x4, −L ≤ y ≤ L, corresponds to the extra

dimension. The extra dimension forms the orbifold S1/Z2, which is a circle of diameter

2L/π with the points y and −y identified. Correspondingly, the metric gMN and the scalar

field φ satisfy the orbifold symmetry conditions

gµν(x,−y) = gµν(x, y) , gµ4(x,−y) = −gµ4(x, y) , (1)

g44(x,−y) = g44(x, y) , φ(x,−y) = φ(x, y) ,

µ = 0, 1, 2, 3. The branes are located at the fixed points of the orbifold y = 0 and y = L.

The action of the model has the form

S = M3

∫

R
√−gd5x −

∫
(

1

2
∂Mφ∂Mφ + V (φ)

)√−gd5x − (2)

−
∫

(λ1(φ)δ(y) + λ2(φ)δ(y − L))
√

−g̃d5x ,

where M is the five-dimensional Planck mass, λ1,2(φ) are the scalar field potentials on the

branes and g̃µν is the induced metric on the branes.

We consider the standard form of the background metric, which is often used in brane

world models (see, for example, [1])

ds2 = γMNdxMdxN = e2A(y)
(

−dt2 + a2(t)ηijdxidxj
)

+ dy2 , (3)
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where ηij = diag(1, 1, 1) and

φ(x, y) = φ(y) . (4)

Below we will consider a maximally-symmetric metric on the branes with

a(t) = eHt , (5)

where H is the four-dimensional Hubble parameter. In this case the equations of motion,

following from (2), take the form [1]

φ′′ + 4A′φ′ =
dV

dφ
+

dλ1

dφ
δ(y) +

dλ2

dφ
δ(y − L) , (6)

M3
(

A′2 − H2e−2A
)

=
φ′2

24
− V

12
, (7)

3M3
(

A′′ + H2e−2A
)

= −φ′2

2
− 1

2
λ1δ(y) − 1

2
λ2δ(y − L) . (8)

We note that the equations for 00-component of the Einstein equations and ij-component

of the Einstein equations have an equal form and lead to (8).

Equations (6), (7), (8) can be rewritten as equations on the interval (0, L)

φ′′ + 4A′φ′ =
dV

dφ
, (9)

M3
(

A′2 − H2e−2A
)

=
φ′2

24
− V

12
, (10)

3M3
(

A′′ + H2e−2A
)

= −φ′2

2
(11)

and standard boundary conditions on the branes

φ′|y=+0 =
1

2

dλ1

dφ
, φ′|y=L−0 = −1

2

dλ2

dφ
, (12)

A′|y=+0 = − 1

12M3
λ1 , A′|y=L−0 =

1

12M3
λ2 . (13)

It is not difficult to show that only two equations of (9), (10), (11) are independent; one

can show it by differentiating (10) and substituting the result into (11).

We consider the standard exponential bulk potential

V = −β2e−γφ (14)

and the following brane potentials

λ1(φ) = ǫ1 + F1(x) · (φ − φ1) , (15)

λ2(φ) = ǫ2 + F2(x) · (φ − φ2) , (16)

where F1,2(x) are auxiliary scalar fields, φ1,2 and ǫ1,2 are constants. Note that the fields

F1,2(x) have no kinetic terms. One can recall that supersymmetry is based on the use of

such auxiliary fields, which are necessary for reaching the closure of the supersymmetry
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algebra [7]. A simple example with the fields of such type in classical field theory can be

also found in [7]. The equations of motions for the fields F1,2(x) (which can be obtained

by means of the standard variation procedure with respect to the fields F1,2(x)) give

φ|y=0 = φ1 , (17)

φ|y=L = φ2 . (18)

In fact the fields F1,2(x) play the role of Lagrange multipliers. We will see below that

conditions (17) and (18) fix the size of the extra dimension. Such method of stabilization

(with the help of auxiliary fields) seems to be quite simple and reduces the number of

parameters to be fine-tuned. The physical consequences are equal to those of the stiff

brane potentials used in [5].

Now let us consider two possible cases.

1. H = 0.

Solution to equations of motion (9), (10) and (11) in the interval (0, L) has the form

A =
2

3γ2M3
ln(ky + C1) + C , (19)

φ =
2

γ
ln(ky + C1) , (20)

where C, C1 are constants and

k2 =
3β2γ4M3

16 − 6γ2M3
. (21)

We also suppose that γ < 2
√

2
3M3 .

Equation (17) defines the constant C1

C1 = e
γφ1

2 ,

whereas the size of the extra dimension is defined by equation (18)

L =
e

γφ2

2 − e
γφ1

2

k
.

The constant C should be defined by the requirement to have Galilean coordinates on

the brane. It means that the values of C are different for different branes: C = − φ1

3γM3

for the brane at y = 0 (A(0) = 0) and C = − φ2

3γM3 for the brane at y = L (A(L) = 0),

see detailed discussion about Galilean coordinates on the branes in [8–10]. In other

words, its value is defined by the physical four-dimensional scale we suppose to use.

We see that all the parameters of the background solution appear to be defined.

Boundary conditions (12) result in

F1 =
4k

γ
e−

γφ1

2 , (22)

F2 = −4k

γ
e−

γφ2

2 . (23)

– 4 –



J
H
E
P
1
1
(
2
0
0
9
)
0
7
7

Boundary conditions (13) suggest that the brane tensions ǫ1,2 should be fine-tuned

ǫ1 = −8k

γ2
e−

γφ1

2 = −12M3 βγ√
6

e−
γφ1

2

√

2M3γ2 − 3
4γ4M6

, (24)

ǫ2 =
8k

γ2
e−

γφ2

2 = 12M3 βγ√
6

e−
γφ2

2

√

2M3γ2 − 3
4γ4M6

. (25)

Such a fine-tuning is inherent to almost all five-dimensional brane world models with

compact extra dimension.

2. H 6= 0.

In this case the solution to equations of motion (9), (10) and (11) in the interval

(0, L) has the form

A = ln(ky + C1) + C , (26)

φ =
2

γ
ln(ky + C1) , (27)

with

k2 =
β2γ2

6
(28)

and

H2e−2C =
k2

3γ2M3

(

3γ2M3 − 2
)

. (29)

We also suppose that γ >
√

2
3M3 . Equation (17) defines the constant C1

C1 = e
γφ1

2 .

The size of the extra dimension is

L =
e

γφ2

2 − e
γφ1

2

k
.

Boundary conditions (12) result in

F1 =
4k

γ
e−

γφ1

2 , (30)

F2 = −4k

γ
e−

γφ2

2 . (31)

We see that the form of (30), (31) is the same as that of (22), (23). It follows from

the fact that the form of the solutions for the scalar field is the same for both cases

(see equations (20) and (27)).

Boundary conditions (13) suggest that the brane tensions ǫ1,2 should be also fine-

tuned (compare with (24), (25))

ǫ1 = −12M3 βγ√
6
e−

γφ1

2 , (32)

ǫ2 = 12M3 βγ√
6
e−

γφ2

2 . (33)
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Thus, we have shown that for
√

2
3M3 < γ < 2

√

2
3M3 there exist two different solutions for

the system with the bulk potential (14). The only difference is in the fine-tuned values of

the brane tensions, see (24), (25) and (32), (33). Very similar situation of two different

background solutions with a fixed bulk scalar field potential was discussed in [5]. We note

that the background solutions presented above are exact.

A very peculiar case is γ =
√

2
M3 . For γ =

√

2
M3 we get fine-tuned tensions

ǫ1 = −4β
√

3M3 e
− φ1√

2M3 , (34)

ǫ2 = 4β
√

3M3 e
− φ2√

2M3 (35)

for both cases (H = 0 and H 6= 0)! It means that there are two different stabilized solutions

corresponding to the bulk scalar field potential (14) and brane tensions (34), (35). The

first one is

A =
1

3
ln

(

√

3

M3
β|y| + e

φ1√
2M3

)

+ C , φ =
√

2M3 ln

(

√

3

M3
β|y| + e

φ1√
2M3

)

, (36)

H = 0 , L =

√

M3

3





e
φ2√
2M3 − e

φ1√
2M3

β



 , (37)

F1 =
√

24βe
− φ1√

2M3 , F2 = −
√

24βe
− φ2√

2M3 ; (38)

whereas the second solution is

A = ln

(

√

1

3M3
β|y| + e

φ1√
2M3

)

+ C , φ =
√

2M3 ln

(

√

1

3M3
β|y| + e

φ1√
2M3

)

, (39)

H = eC

√
2β

3
√

M3
, L =

√
3M3





e
φ2√
2M3 − e

φ1√
2M3

β



 , (40)

F1 =

√

8

3
βe

− φ1√
2M3 , F2 = −

√

8

3
βe

− φ2√
2M3 . (41)

We see that there is a doubling of the background solution for appropriate values of

the model parameters. Both solutions correspond to fixed sizes of the extra dimension,

maximally-symmetric spaces on the branes (maximally symmetric spaces are Minkowski,

dS and AdS, see [11]) and both correspond to stationary cosmological solutions. Thus it

seems that there are no phenomenological criteria (such as a symmetry criterion) to choose

between the solutions.

Of course, such doubling is the consequence of our choice of the stabilizing brane poten-

tials (15), (16). One can chose a more familiar form of the potentials (see, for example, [1]):

λ1(φ) = −4β
√

3M3 e
− φ1√

2M3 + Q1 · (φ − φ1) + q2
1 (φ − φ1)

2 , (42)

λ2(φ) = 4β
√

3M3 e
− φ2√

2M3 − Q2 · (φ − φ2) + q2
2 (φ − φ2)

2 , (43)
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where Q1, Q2, q1, q2 are constants. If Q1 =
√

24 βe
− φ1√

2M3 , Q2 =
√

24 βe
− φ2√

2M3 , then

one should consider the first background solution with H = 0, if Q1 =
√

8
3 βe

− φ1√
2M3 ,

Q2 =
√

8
3 βe

− φ2√
2M3 , then one should consider the second background solution with H 6= 0.

But the latter brane potentials appear to be more fine-tuned than potentials (15), (16).

Now let us discuss the obtained results and compare them with those obtained earlier.

In [1] the problem of uniqueness of solutions to (6)–(8) was discussed. Although the main

solutions in [1] were obtained with the help of the superpotential method (see also [12]),

some statements for the general case were also made. It was argued that there should exist

a solution to (6)–(8) without fine-tuning of the parameters and this solution is (locally)

unique. This seems to be not correct in general. Indeed, even with quite relaxed brane

potentials (15), (16), which contain additional degrees of freedom described by the scalar

fields F1,2(x), there should be fine-tuning of the brane tensions (24), (25) or (34), (35) in

order to get the solutions. For the case γ =
√

2
M3 the solutions appear to be not unique

globally, and only additional fine-tuning can separate them (although the uniqueness of the

solution was discussed in [1] for the case H 6= 0, formally the case H = 0 should be included

as a possible solution to this system of equations). The subtle point is that our relaxed brane

potentials allow the existence of two different global solutions. If we take highly fine-tuned

brane potentials (42), (43), which depend only on φ (analogous potentials were considered

in [1]), the solutions seem to be even globally unique for the given values of Q1, Q2.

Nevertheless, it was noted in [1] that at least for H = 0 there can be a discrete set of

solutions to the equations of motion with fixed values of φ1 and φ2. As we have seen above

in a special case the solutions can even belong to different classes — one with H = 0 and

another with H 6= 0.

In this connection in should be mentioned that, as it was noted in the beginning of

the paper, in [5] an analogous situation with two solutions corresponding to H = 0 and

H 6= 0 for a given bulk scalar field potential was considered. To find the solutions the

superpotential method was used, at the same time the brane potentials were chosen to

be stiff, which led to the same physical consequences as our choice (15), (16): the only

boundary conditions for the scalar field in both cases are (17), (18). In this sense, besides

the choice of the bulk scalar field potential, our model and the model of [5] are very similar.

The first exact solution in [5] with H = 0 was the one previously obtained in [1], whereas

the second approximate solution corresponding to H 6= 0 was found perturbatively. It

has been shown in [5] that the second solution corresponds to the case where there is no

fine-tuning of the tension on the second brane (but with the fine-tuning on the first brane

retained). Our results show that such situation can be realized even if we retain fine-tuning

of the second brane tension.

Finally we would like to note that although the doubling of background solution hap-

pens only for a particular choice of the parameter γ in (14) and in the special case of

brane potentials (15), (16), more realistic brane world models could also lead to different

background solutions for equal values of fundamental parameters. It is necessary to bear

this in mind while examining brane world models.

– 7 –
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